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We present a new modification of the SHAKE algorithm, MSHAKE, that maintains fixed 
distances in molecular dynamics simulations of polyatomic molecules. The MSHAKE algo- 
rithm, which is applied by modifying the leapfrog algorithm to include forces of constraint, 
computes an initial estimate of constraint forces, then iteratively corrects the constraint forces 
required to maintain the fixed distances. Thus MSHAKE should always converge more 
rapidly than SHAKE. Further, the explicit determination of the constraint forces at each 
timestep makes MSHAKE convenient for use in molecular dynamics simulations where bond 
stress is a significant dynamical quantity. (i‘, 1989 Academic Press, Inc. 

I. INTRODUCTION 

A fundamental difficulty with the simulation of dynamics of polyatomic 
molecules is the large range of time-scales associated with molecular motions. The 
duration of a simulation is limited by the magnitude of the smallest timestep, which 
must be small compared to the shortest characteristic time of interest. Often the 
slower modes of a molecule, for example, rotations about bonds, are of more interest 
than the bond vibrations. In such cases, much longer periods may be simulated by 
constraining the bonds to fixed lengths, thus allowing a larger timestep. 

Various iterative and noniterative methods have been developed for maintaining 
rigid bonds in molecular dynamics simulations of large molecules [l-lo]. Two 
commonly used algorithms are SHAKE [2, 33, which is iterative, and the matrix 
method [2], which is noniterative. The matrix method inverts a matrix to solve for 
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Lagrange multipliers that satisfy the constraint conditions, and so becomes com- 
putationally expensive for very large molecules. The SHAKE algorithm avoids 
explicit matrix inversion by iteratively adjusting particle coordinates until the 
system satisfies all the constraints to within a given tolerance. In addition to main- 
taining rigid bonds, constraint algorithms must correct for the increasing departure 
from the ideal lengths, called constraint decay, that results from the accumulation 
of numerical errors. Iterative algorithms correct for constraint decay implicitly by 
requiring convergence to within a specified tolerance at each timestep. Deviations 
in the constrained distances from their initial values are continually checked and 
corrected. Noniterative algorithms require an explicit scheme for counteracting 
constraint decay because there is no inherent feedback mechanism for monitoring 
changes in distance. Recently Edberg et al. [6] developed a noniterative constraint 
algorithm that defines penalty functions that monitor constraint deviations. The 
penalties are minimized by correcting the deviations according to Gauss’ principle 
of least constraint [7]. By permitting the constraint to relax slightly, the computa- 
tional cost is reduced because the accumulation of numerical errors is not corrected 
at every timestep. 

In this paper, we present a modification of the SHAKE algorithm for enforcing 
holonomic constraints in polyatomic molecules. A constraint force function is 
derived using the leapfrog algorithm with constraint conditions applied pairwise to 
all restricted particles. Memon et al. [S] have also developed a constraint force 
algorithm based on leapfrog integration. However, where they solve for constraint 
forces by matrix inversion, the MSHAKE algorithm first computes an initial 
estimate for each constraint force using finite differences of previous timesteps and 
then performs functional interation to reach convergence. The finite differences used 
to compute the initial estimates of the constraint forces require little extra work 
because the constraint forces are calculated explicitly at each timestep. Tests using 
the MSHAKE algorithm show that it converges rapidly and that numerical errors 
do not accumulate, so there is no unstable “constraint decay” [6]; the constraint 
error fluctuates stably. 

In principle, any two-particle constraint algorithm can serve as the basis of an 
iterative multiple-constraint algorithm since the evaluation of any two-particle 
constraint force can treat constraint forces from previous calculations as external 
forces. In practice, however, this is not always the case. For example, Singer et al. 
[9] have developed an efficient and widely used [lo] two-particle constraint algo- 
rithm that treats the dynamics of the center-of-mass separately from the rotational 
motion. Because it treats the dynamics of two linked particles implicitly, it cannot 
be extended simply to a system with multiple constraints. The MSHAKE algorithm 
discussed below treats multiple constraints in a very natural manner, since 
constraint forces calculated at one iteration are treated as though they were 
external forces on the next iteration. 

Our method of computing constraints is well suited to molecular dynamics 
simulations where bond stress is a significant dynamical quantity [ll, 121. We 
therefore present a description of constraints in terms of constraint forces, rather 
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than bond distances, and give a detailed geometric interpretation of the constraint 
force (see Appendix) that should provide a basis for its use in monitoring various 
aspects of bond stress in molecular dynamics simulations. The finite-difference 
scheme used in MSHAKE requires the constraint force per bond at previous 
timesteps. In molecular dynamics simulations where bond stress is a significant 
quantity, computing and storing the constraint force per bond is a negligible 
additional cost. 

II. THE MODIFIED SHAKE ALGORITHM 

A. Background 

The mathematical basis of the MSHAKE algorithm presented here is the same 
as that for all other iterative constraint algorithms. We assume in this analysis that 
all constraints may be expressed as constraints between pairs of particles. For each 
linked particle in the system, a force dF,, the sum of all constraint forces acting on 
the particle i, is added to the total force Fi on particle i. The quantity dF, may be 
given by 

,= I 

where the clii are constants that specify the magnitude of each constraint force and 
the 1, are the Ki vectors from i to its constrained partners j. If there are N 
constraints, the constrained system has N unknowns c+ and the system is solvable. 
Memon et al. [S] have discussed efficient matrix methods for determining these 
unknowns using constraint equations obtained from the leapfrog integration 
scheme. Ryckaert et al. [2] pointed out that because the solution to the constraint 
system of equations is unique, any convergent procedure that satisfies all geometric 
constraint conditions by displacements dXj of the form 

Kt AXi= c a,(W2 l,- 
U’ 

j=l Pq 
(2) 

where 6t is the magnitude of the timestep and pii is the reduced mass of particles 
i and i, is equivalent to results obtained by solving Eq. (1). Some iterative 
constraint algorithms adjust Eq. (l), e.g., Memon et al., while other adjust Eq. (2), 
e.g., SHAKE, to satisfy the constraints. 

At each time step, the MSHAKE algorithm computes an approximation of the 
constraint constants {LX~} using the constraint constants from previous timesteps. 
Corrections are then applied to {Q} using rapidly converging procedure. Because 
the initial estimates of {CQ} are usually close to the actual solutions, the number of 
iterations required in MSHAKE is significantly less than in other iterative schemes. 
Further, MSHAKE calculates the constraint force explicitly at each timestep, rather 
than implicitly, as is the case in SHAKE. The explicit calculation of the constraint 
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force on each bond is important in molecular dynamics simulations where the force 
along molecular bonds is required to determine significant dynamical attributes of 
the molecules [ 11, 121, and thus MSHAKE is better suited than SHAKE for such 
problems. 

B. Derivation 

In this section, we develop a procedure to calculate the constraint force dF, for 
maintaining fixed separations between particles that are subject to more than one 
distance constraint. Consider a system of particles in which each particle moves in 
the force field of all the others. A constraint on any given particle, such as a fixed 
separation or fixed angular orientation, imposes a condition on that particle’s 
trajectory. The constraint force can be defined by the equations of motion describing 
the trajectory of a given particle i, 

mi$‘=Fi+dFi(Xj, {Xj},Vz, {Vi}, {F,}, (Fi}). 

In Eq. (3), Fi is the total force on particle i due to the other particles in the system, 
dF, is the total constraint force on particle i; mi, Xi, and Vi are the mass, position, 
and velocity, respectively, of particle i; {X,} and (V,} are the sets of positions and 
velocities of the particles that are constrained with particle i; and {F,} and (F,} are 
the sets of forces, both external and constraint, that act on particles i and j. 

First consider the two-particle, single constraint case. We define the constraint 
force along the bond between particles i and j, dF,, to be the force required to 
maintain a fixed separation between particle i and particle j at each discrete 
timestep of the leapfrog integration of Eq. (3). The leapfrog procedure [13, 143 is 
modified to include the forces of constraint, dF,, so that the position X and the 
velocity V of each particle are given by 

X :,+‘=xy+v;+‘i’& (4) 

The superscripts in Eqs. (4) and (5) indicate that X and V are centrally differenced. 
After n timesteps of size at, V and X are computed at times (n + i) 6t and (n + 1) 6t, 
respectively. 

The constraint force LIF; must satisfy the condition 

p;+‘-x;+yd;, (6) 

where I, = I&l is the fixed distance between particles i and j. However, in any real 
simulation, the errors accumulate at each timestep so that 
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where 1, = II,) z l,,, but in general lV # f,. Equation (6) may be written, using 
Eqs. (4) and (5), as 

where pLo is the reduced mass. 
The constraint force can be found directly from Eq. (8); 

AF,+$;,, 

where 

and 

Al, = (Vi” ~ ‘I* 

(9) 

(10) 

(11) 

the change in I, due to the forces and velocities at timestep (n + 1) 6t without the 
constraint forces applied. A geometric interpretation of Eq. (9) is given in 
Appendix 1, where we show that the negative root gives the physically reasonable 
value for the constraint force. 

At this stage, the algorithm is exact for the special case of single-constraint 
systems, e.g., diatomic molecules. To extend the method to polyatomic molecules, 
we employ simple functional iteration solving the system of equations using Gauss- 
Jacobi iteration. We begin the first iteration by calculating the force displacement 
for the first pair of constrained atoms using Eq. (9). The constraint force is then 
added to the force acting on each particle, i.e., in Eq. (1 l), Fj -+ Fi + AF, and 
Fi -+ Fi - AF,. The next successive displacement is calculated using Eq. (9) with the 
updated forces. This continues until force displacements have been calculated for all 
constrained pairs. Iteration is continued for all unconverged pairs. Finally, the 
equations of motion are integrated and the next time step begins. 

The MSHAKE method, although defined in terms of constraint forces (Eqs. (10) 
and (1 l)), would be equivalent to the SHAKE method if used according to the 
procedure outlined in the previous paragraph. However, by introducing a linite- 
difference scheme, the MSHAKE method defines a procedure that is essentially 
linear and thus significantly different in character from SHAKE. 

The convergence of the calculation can be greatly improved by starting with an 
estimate of the constraint force derived from preceding timesteps: 

(12) 
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The constraint force estimates are then added, with proper signs, to the forces on 
particles i and j, and processing by MSHAKE proceeds as in the previous 
paragraph, but with many fewer iterations. If the converged estimates A, are 
retained for several timesteps, finite difference approximations for the nth time step, 
&y”, can be evaluated as 

if m=O; 
if m=l; (13) 
if m = 2, 

where 

(14) 

The implementation of the MSHAKE algorithm is described in the next section, 

C. Procedure for Calculating Multiple-Constraint Forces 

The procedure is illustrated by the flowchart in Fig. 1. For each particle i in the 
system: 

COMPUTE TOTAL FORCE ON 
EACH PARTICLE IN THE SYSTEM 

NO 
CRITERION IS 

ADVANCE PARTICLE POSITIONS 
AND VELOCITIES 

(EQ. 11) 

FIG. 1. Flow chart illustrating the MSHAKE algorithm. 



MODIFIED SHAKE ALGORITHM 479 

(1) Compute Fi, the sum of all the nonconstraint forces acting on each 
particle. 

(2) Compute an estimate for the constraint force on each particle based on 
the values at previous time steps, and add to Fi. During initialization, the estimate 
is set equal to zero. 

(3) Compute the constraint force, dF, defined by Eq. (9) for each bond ij in 
the system, and add the constraint force to the force on each particle. 

(4) If the estimate of total force has converged, then move the particles, 
otherwise continue looping at step (3). 

D. Features of the MSHAKE Algorithm 

( 1) The use of simple functional iteration on the constraint forces allows 
MSHAKE to be essentially linear in character. In order that the numerical solution 
of the constrained equations-of-motion be well behaved, a timestep must be chosen 
so that the change in the external force on each particle is small over the time inter- 
val defined by the timestep. As a result, since the constraint force cannot exceed the 
external force on each pair, the constraint force for each bond is slowly varying and 
well behaved over several timesteps. Thus initial estimates of the constraint force 
magnitude, av, based on converged estimates from one or two preceeding timesteps, 
have the property that they lie within a small neighborhood, i.e., in the linear 
region, of the solution for the current timestep. Therefore, the use of final values as 
initial estimates for the current iteration yields rapid convergence. Further, since 
this property is independent of system size, it follows from the theory of nonlinear 
equations [ 151 that large systems should converge as rapidly as small ones. 

(2) Although forces and positions are simply related, using final estimates of 
position displacements may not be as efficacious as force displacements. The 
timestep is chosen such that forces will not vary greatly with timestep, but positions 
may not be as well behaved. Since position is a function of velocity as well as 
acceleration, a constant large acceleration will yield no variation in the force but a 
large variation in the velocity and position with time. Further, velocity and position 
are affected by forces from the two previous timesteps, cf., Eqs. (4) and (5). There- 
fore, retaining estimates of the magnitude of the change in particle position may not 
guarantee initial estimates in the near neighborhood of the current solution. 

(3) The development of the constraint forces during the first two iterations of 
MSHAKE, with m = 0, i.e., no initial estimate of the constraint force, is illustrated 
in Fig. 2. For this example, we have chosen to perform Gauss-Jacobi iteration from 
top to bottom. During the first iteration, the first constraint force calculated, dF,,, 
depends only on the distance between particles 1 and 2, their velocities, and the 
external forces acting on them. The second constraint force calculated, dF,,, 
depends on the corresponding quantities, but the forces that act on particle 2 now 
include dF,,, a force of constraint. During all subsequent iterations, the constraint 
force dF, depends on all the constraint forces previously calculated for particles i 
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FIRST ITERATION SECOND ITERATION 

FIG. 2. Constraint forces contributing to the total force on each bound particle at different iterations. 
The quantity F, is the total force on particle i not including constraint forces. The quantity (LIF~)~ is 
the constraint force for maintaining bond 4 at the kth iteration. 

and j. As the timestep 6t decreases, the order of evaluation has less of an effect on 
the increment to the total force eventually applied to each particle, and the number 
of iterations required for computing the constraint forces decreases. Note that the 
forces between all mutually constrained particles are set to zero before evaluating 
the constraint force. In principle, this is not necessary because the constraint force 
counteracts any mutual interaction. However, interactions at bond-length separa- 
tions are relatively large and result in large values for 1,. Al, in Eq. (10). Further- 
more, the force gradient is large at short range, necessitating a very small timestep. 

(4) As the number of iterations k increases, (AFG)‘+ 0, independent of the 
order in which the (AF;)k are computed. This property provides flexibility for 
computing the constraint forces because the calculation may be partitioned for 
optimal processing for a given problem or computer. 

(5) The MSHAKE algorithm, when used with its least-optimal mode, m = 0, 
converges as rapidly as SHAKE. However, when estimates of au are included, 
MSHAKE is more efficient than other iterative schemes. If the constraint constants 
{A,) are kept for at least two previous steps, an efficient finite-difference scheme 
can be used to compute a good approximation to changes in the values of the 
constraint force. Since the constraint forces are usually smooth and slowly varying 
functions of time, the linear approximation in Eq. (12) is usually adequate. Thus it 
is possible to reduce the number of iterations appreciably and maintain the same 
level of accuracy as other iterative schemes at little additional computer cost. 

There are two advantages of using the constraint constants {A,}, rather than the 
constraint forces themselves, as estimates for the constraint forces in the following 
timestep. First, at the next timestep, the geometry and orientation of the molecule 
will have changed somewhat, hence the vector constraint force must also change, 
even though its magnitude may not. When the {A,} are used, the new force 
estimate is found simply by multiplying {A ij} by the direction cosines of bond ij. 
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Second, only scalars need be stored for each constrained distance rather than the 
components of the corresponding vector forces. 

(6) Small errors in the computed value of dFz. combined with errors resulting 
from discretization produce two types of constraint decay: deviations of the bond 
lengths from their assigned values and nonzero relative velocity between con- 
strained pairs of particles along the direction of the bond. The multiple-constraint 
force dF; has two features that counteract constraint decay. These are the condi- 
tion imposed by Eq. (6) that causes dF% to maintain an assigned bond length, and 
the contribution of the first term in Al, in Eq. (1)) to AF; that minimizes any 
relative velocity components along bonds. These two factors contribute to the 
stability of the algorithm and give the algorithm the ability to correct for the 
accumulation of small errors resulting from discretization or any approximation 
of ag. 

(7) The constraint force along a bond can be used as a measure of the stress on 
the bond induced by other particles and fields in the system. For example, in 
constrained molecular dynamics simulations of shocks and detonations in solids 
[ 11, 121, when the constraint force along a lissile bond reaches some pre-estab- 
lished value, the bond may be broken, and the bond energy distributed as kinetic 
energy between the fragments. The MSHAKE algorithm is well suited for such 
simulations, since the constraint force along each bond is calculated explicitly at 
each timestep. 

III. DEMONSTRATION OF GENERAL FEATURES 

We conducted a series of molecular dynamics simulations using a system of 
particles with constraints. Our goal was nor to model any particular real system but 
to demonstrate the general features of the MSHAKE algorithm with a system of 
highly constrained molecules whose interactions are typical of real molecules. We 
compared the performance of the MSHAKE algorithm as a function of the order 
of approximation. When m = 0, the lowest order, MSHAKE solves the same system 
of equations as SHAKE and therefore provides a good general estimate of the 
characteristics of iterative constraint algorithms. We used this general estimate as a 
basis for investigating the accuracy and efficiency of the MSHAKE method. Our 
results demonstrate that MSHAKE is stable, that it has accuracy comparable to 
SHAKE, and that it converges rapidly relative to other iterative constraint 
algorithms. 

The model used for these tests consisted of a 12 x 12 array of rigid tetra-atomic 
molecules in three-dimensional space. The bond lengths and angles were fixed at the 
normal carbon-carbon single bond length of 1.54 8, and at the tetrahedral angle, 
109”28’, respectively. Non-bonded interactions were given by a Lennard-Jones 
potential with parameters taken from atomic nitrogen [ 161, E = 0.5143 x lo-l4 erg 
and ~7 = 3.31OA. The boundary conditions were periodic in the plane of the initial 
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array. The system was bounded in the third dimension by a pair of walls with the 
same LJ parameters as the particles themselves. The MLG algorithm [ 17, 181 was 
used to compute interactions and track particle positions. Each molecule in the 
system was given a random initial velocity, and the motion was calculated with 
timesteps varying between 2 x 10 ~~ ” and 2 x lo- I4 s until the kinetic and potential 
energies reached steady values. Test simulations were conducted starting from these 
equilibrated systems, during which we monitored the deviation of actual distances 
I, from their proper values I,, the energy and momentum of the particles in the 
system, and the constraint force per bond per iteration. 

Using the system described above, a simulation was conducted to test the 
stability of the MSHAKE algorithm. The energy and geometric constraint devia- 
tions were monitored for 42000 steps of 5 x lo- I6 s each. Five iterations were used 
to evaluate the constraint forces at each timestep. The maximum deviation from 
exact lengths is about 2 %. The average number of deviations greater than 1% per 
timestep is about 3, and the maximum recorded is 12 out of 720 bonds in the whole 
system. The identity of the constrained particles responsible for these deviations 
does not stay the same for more than about 100 timesteps. Both the small number 
and the fluctuating identity of deviations demonstrate the ability of the MSHAKE 
algorithm to counteract constraint decay. Under these conditions, we prefer to 
speak of “constraint relaxation,” since there is no tendency for the number or 
magnitude of the deviations to grow. We conducted these same tests with a similar 
system that did not have fixed bond angles. In these simulations the average 
magnitude of constraint deviation was negligible after five iterations. 

Simulations were also conducted to test the extent to which the constraint forces 
calculated in our model depend upon the sequences in which the constraint-force 
corrections are evaluated at each iteration k. The trajectories of particles were com- 
pared for simulations starting from the same state but having the constraint-force 
corrections calculated in a different sequence. The number of constraint force itera- 
tions per timestep for all these simulations was kept fixed at 5. The final states of 
two simulations run over 3 x lo- I2 s for 6t = 1 x lo- l5 s, one corresponding to a 
forward evaluation and the other to a backward evaluation, differ by one part in 
lo5 in the mean particle displacements. These tests show that the stability of the 
algorithm does not depend on the order of evaluating the constraint-force correc- 
tions. For larger timesteps, the sequence in which the constraint-force corrections 
are evaluated has a larger effect on the trajectory due to the constraint relaxation 
associated with the highly constrained system. 

The constraint-force correction, (dFg)k, for a typical bond is shown in Fig. 3 as 
a function of iteration k for A, calculated using three different estimates for a:. For 
all values of m, the magnitude of the correction to the constraint force falls off 
exponentially with increasing iterations through the constraint force algorithm. The 
convergence rate and associated accuracy are comparable to those of the SHAKE 
algorithm for a similar system [2]. This is to be expected since, for m = 0, the 
constraint-force corrections (defined by Eq. (1)) are proportional to the spatial 
adjustments (defined by Eq. (2)) that would be made by the SHAKE algorithm in 
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0 2 4 6 6 10 12 14 16 

ITERATION 

FIG. 3. Correction to the constraint force along one bond as a function of iteration through the 
MSHAKE algorithm for increasing accuracy of approximation. 

225L , , , , / I , I ( I , / ( 1, 

ITERATION 

FIG. 4. Convergence of the total force on one particle as a function of iteration through the 
MSHAKE algorithm for increasing accuracy of approximation. 

SSl/S5/2-I5 
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order to satisfy the same constraint conditions. For m # 0, there is a significant 
decrease in the number of iterations required for convergence. Note that there is no 
loss of accuracy associated with using the estimations (m # 0), since at each itera- 
tion any residual associated with A, is uniquely defined in terms of the constraint 
conditions. Thus, it follows that zero is a unique limit point of the sequence 
{ (dFi)k}. The convergence of the total force (external + constraint) acting on one 
of the particles of the bond involved in Fig. 3 is illustrated in Fig. 4. The negligible 
change in the total force for m = 2 upon iteration through the constraint force 
algorithm suggests that the maximum number of iterations might be reduced 
significantly in this case, resulting in a corresponding reduction in computation 
time. 

IV. CONCLUSION 

We have derived a new algorithm, MSHAKE, for constraint dynamics that 
represents a significant modification of the SHAKE algorithm. Our method consists 
of two steps: (1) calculation of an estimate using a finite-difference scheme; and (2) 
calculation of corrections using iterative relaxation. We have presented a com- 
parison of our method to SHAKE (which uses only iterative relaxation) that is 
independent of the mode of implementation. The number of iterations required in 
the SHAKE method depends on the particular type of constrained system. Thus for 
SHAKE, maintaining a large number of constraints should require a large number 
of iterations. With our method, regardless of the number of constraints to be 
maintained in a system, the initial estimates are always within a very small 
neighborhood of the solution. Thus, iterates are always small, if not negligible (see 
m = 2 in Fig. 4), and any relaxation procedure will converge rapidly. Thus, it should 
not be expected that an increase in the number of constraints will not require an 
increase in the number of iterations for calculating corrections to the initial 
estimates. 

We have also described the calculation of multiple constraints from the 
standpoint of constraint-force functions. Our purpose in doing this was not simply 
to recast the formalism of SHAKE using a different representation, but to provide 
some physical insight for the use of constraints in molecular dynamics simulations 
where bond stress is as important as position and velocity [ll, 121. It is interesting 
to note that this class of simulations motivated the idea of using forces along bonds 
from previous timesteps to calculate a very good estimate of each constraint force. 

APPENDIX 1: GEOMETRIC INTERPRETATION OF 
CONSTRAINT-FORCE CORRECTIONS AT EACH ITERATION 

The corrections (nF;)&, k = 1, . . . . N to the estimated constraint force can be given 
a geometric interpretation by considering the relative motion of two particles 
associated with a particular bond of length 1,. The motion of a particle of mass mi 
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relative to a particle of mass mj is equivalent to the motion of a particle of mass 
I* = m;mj/(mi + mj) moving with respect to a fixed point in space in the center-of- 
mass coordinate system. We therefore consider the force required to constrain the 
motion of a particle of mass p to a fixed orbit about a point in space. In the following 
discussion, we have dropped the superscripts i and n for clarity. 

We define l,(t) to be the displacement of the particle from the fixed point at time 
t, l,,.(t + 6t) to be the displacement of the particle at time t + 6t in the absence of 
the constraint, and lo(t + 6t) to be the displacement at time t + 6t in the presence 
of the constraint. See Fig. (Al). Note that in principle Il,l = I&l, but in actual 
simulations numerical errors destroy this equality. The force we seek is that 
required to correct for the displacement Al,., where 

Al,. = l,,, - 1,. (Al) 

The displacement Al, breaks naturally into two parts, 

Al,. = Al,., + Al,, . (AZ) 

First, the relative displacement in the absence of the constraint is given by 

Al, = I,, - 1,. (A3) 

The projection of Al, on Al, is 

(A4) 

The remaining distance to be corrected, Al,,, is the difference of 1,(6t) and the pro- 
jection of lo(t + 61) onto l,(t), i.e., 

Al,, = 1, - 1,. . (A5) 

Note that a distance-constraining force can only correct radial displacements, not 
tangential displacements such as Al,. Substituting the relation 1, = 1, - Al, into 
Eq. (A5) and summing Eqs. (A4) and (A5), we obtain 

FIG. Al. Geometric description of the various terms of the constraint force function Eq. (9). 
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The expression in brackets is identical to that for aq given in Eq. (10). 
Since the constraint forces are directly proportional to the distances to be corrected, 

AF, = AF,., + AF,., = 4 Al,,, + 4 Al,., . 
(dt) (ht) 

(A7) 

From the discussion and Fig. (Al), we see that the force AF,., counteracts the exter- 
nal forces that cause deviations from the fixed bond length. This term may be 
isolated to monitor the stress on the bond at each timestep. The force AF,., gives 
the particle a trajectory consistent with the rigid bond constraint and also corrects 
deviations due to accumulated numerical errors and incomplete satisfaction of 
constraints at the previous timestep. 
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